O.P.Code: 23HS0836

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 DISCRETE MATHEMATICS & GRAPH THEORY

		(Common to CSIT, CSE, CIC, CCC, CAI, CSM and CAD)			
Time	3 1		Max. N	Aarks:	70
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a	Construct a truth table for Biconditional.	CO ₁	L3	2M
	b	Define Duality law.	CO1	L1	2M
	c	State Principle of Inclusion-Exclusion for three sets.	CO ₂	L1	2M
	d	Find the smallest value of x under the multiplication modulo5, if	CO ₂	L1	2M
		$3 \times_5 x = 1.$			
	e	Find the value of n , if $C(n,7) = C(n,5)$.	CO ₃	L1	2M
	f	State Multinomial theorem.	CO ₃	L1	2M
	\mathbf{g}	b) Find the generating function for the sequence 1,1,0,1,1,1,	CO ₅	L3	2M
	h	Solve $a_n - 4a_{n-1} = 0$.	CO ₅	L3	2M
	i	Define Complete bipartite graph with example.	CO ₆	L1	2M
	j	Define spanning tree with example.	CO6	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50 \text{ Marks}$)			
		UNIT-I			
2	a	What is Principal conjunctive normal form? Obtain the Principal	CO ₁	L1	5M
		conjunctive normal form of $(\sim p \rightarrow r) \land (q \leftrightarrow p)$ without using			
		truth table.			
	b	Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.	CO ₁	L3	5M
		OR			
3	a	Show that $R \land (P \lor Q)$ is a valid conclusion from the premises.	CO1	L2	5M
		$P \lor Q, Q \to R, P \to M \text{ and } \sim M.$			
	b	Verify the validity of the following arguments: Lions are dangerous	CO ₁	L4	5M
		animals, there are lions. Therefore, there are dangerous animals.			
		UNIT-II			
4	a	Define and give examples for semi group, Monoid, Group.	CO ₂	L1	5M
	b	If $A = \{1,2,3,5,30\}$ and R is the divisibility relation, prove that (A, R)	CO ₂	L3	5M
		is a Latticesbut not a distributive Lattices.			
		OR			
5	a	Show that the set of all positive rational numbers forms an abelian	CO ₂	L2	5M
		group under the composition defined by $a * b = \frac{ab}{2}$.			
	h	Explain the concepts of homomorphism and isomorphism of groups	CO2	L2	5M
	v	with examples.	COZ		3111
-		UNIT-III	COA	т 4	#16 AF
6	a	How many numbers can be formed using the digits 1, 3, 4, 5, 6, 8 and	CO ₃	L2	5M
	L	9 if no repetitions are allowed?	CO2	Т 2	en e
	D	Find the number of arrangements of the letters in the word	CO ₃	L3	5M
		MATHEMATICS.			

- 7 a Find how many solutions are there for $x_1 + x_2 + x_3 = 17$, subject to CO3 L1 6M the the constrainats $x_1 > 1$, $x_2 > 2$, $x_3 > 3$.
 - b Find the co-efficient of x^3y^7 in $(x+y)^{10}$ CO4 L3 4M

UNIT-IV

- 8 a What is the solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2}$, CO5 L3 5M for $n \ge 2$ with the initial conditions $a_0 = 2$ and $a_1 = 7$.
 - b Solve $a_n 5a_{n-1} + 6a_{n-2} = 0$. CO5 L3 5M

OR

Solve the recurrence relation using generating functions $a_n - 9a_{n-1} + 20a_{n-2} = 0$, for $n \ge 2$ ith the initial conditions $a_0 = -3$ and $a_1 = -10$.

UNIT-V

10 a Show that the two graphs shown below are isomorphic? CO6 L2 5M

- **b** Draw the graph represented by given adjacency matrix
 - (i) $\begin{bmatrix} 0 & 2 & 0 & 1 \\ 2 & 0 & 3 & 0 \\ 0 & 3 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$ (ii) $\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 2 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}$

OR

- 11 a Show that the maximum number of edges in a simple graph with n CO6 L1 5M vertices is $\frac{n(n-1)}{2}$.
 - b Find the number of vertices, number of edges and the number of CO6 L3 5M regions for the following graph and verify the Euler's formula.

*** END ***

CO6

L₂

5M

O.P.Code: 23HS0834 R23 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 NUMERICAL METHODS & TRANSFORM TECHNIQUES

	(Mechanical Engineering)	10		
Tim	ne: 3 Hours	Max.	Mark	s: 70
	PART-A			
	(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a Find the root of the equation $x^2 - 5 = 0$ by using Bisection method.	CO ₁	L2	2M
	b Solve by Jacoby method $x + y = 3$; $3x - 2y = 4$ Only two iterations.	CO ₁	L5	2M
	c Construct a forward difference table for the function $y = x^2$ for $x = 0, 1, 2, 3$.	CO2	L3	2M
	d Write the normal equations used in fitting a second degree polynomial.	CO2	L1	2M
	e State Euler formula to solve $y' = f(x, y)$, $y(x_0) = y_0$ at $x = x_0 + h$.	CO ₃	L1	2M
	f If $\frac{dy}{dx} = y - x$; $y(0) = 2$, $h = 0.2$ then Find the value of k_1 in R-K	CO ₄	L1	2M
	method of fourth order.			
	g What is the Linear Property of Laplace Transform.	CO5	Т 1	211/1
	h State First Shifting Theorem.	CO5	L1	2M
	i Write the Euler's formula for Fourier Series.	CO6	L1	2M
	j Write the formula for Fourier cosine transform.	CO6	L1	2M
	PART-B	COO	L1	2M
	(Answer all Five Units $5 \times 10 = 50$ Marks)			
	UNIT-I			
2		G04	.	
2	a Find a positive root of the equation $x^4 - x - 10 = 0$ by iteration	CO ₁	L1	5M
	method.	G01	T 4	#3. <i>f</i>
	b Solve $x^3 - 2x - 5 = 0$ for a positive root by iteration method.	CO ₁	L3	5M
2	OR	~~1		403.5
3	Apply Gauss Siedel iteration method to solve equations $20x + y - 2z =$	COI	L3	10M
	17; 3x + 20y - z = -18; 2x - 3y + 20z = 25.			
	UNIT-II			
4	From the following table values of x and $y=tan x$. Interpolate the values of y	CO ₂	L5	10M
	when $x=0.12$ and $x=0.28$.			
	x 0.10 0.15 0.20 0.25 0.30			
	x 0.10 0.15 0.20 0.25 0.30			

x	0.10	0.15	0.20	0.25	0.30
y	0.1003	0.1511	0.2027	0.2553	0.3093

OR

Find the curve of best fit of the type $y = ae^{bx}$ to the following data by method CO2 L1 10M of least squares

X	1	5	7	9	12
Y	10	15	12	15	21

UNIT-III

6 Find an approximate value of y for x = 0.1 by Picard's method, given that CO3 L1 10M $\frac{dy}{dx} = x + y, y(1) = 1.$

7	Using Runge – Kutta method of fourth order, find $y(0.1)$ and $y(0.2)$	CO4	L3	10M
	given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.			
	UNIT-IV			
8	a Find the Laplace transform of $t^2e^{2t}\sin 3t$.	CO5	L3	6M
	b Find the Laplace transform of e^{4t} sin2t cost.	CO ₅	L3	4M
	OR			
9	a Find the Inverse Laplace transform of $\frac{1}{s(s^2+a^2)}$.	CO5	L3	5M
	b Find $L^{-1}\left\{\frac{s-2}{s^2+5s+6}\right\}$.	CO5	L3	5M
	UNIT-V			
10	Expand $f(x) = x $ as a fourier series in the interval $(-2,2)$.	CO6	L3	10M
	OR			
11	Find the Fourier sine and cosine transforms of $f(x)=e^{-ax}$, $a>0$ and hence	CO6	L1	10M
	deduce the integrals (i) $\int_0^\infty \frac{p \sin px}{a^2 + p^2} dp$ (ii) $\int_0^\infty \frac{\cos px}{a^2 + p^2} dp$.			
	*** ENID ***			

O.P.Code: 23HS0833 R23 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 COMPLEX VARIABLES & NUMERICAL METHODS

		COMPLEX VARIABLES & NUMERICAL METHODS (Floatricel & Floatronics Engineering)			
Tin	ıe:	(Electrical & Electronics Engineering) 3 Hours	Max.	Mark	ks: 70
		<u>PART-A</u>			
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	Define analytic function.	CO1	L1	2M
	b	Find where the function $w = \frac{1}{z}$ ceases to be analytic.	CO1	L2	2M
	c	State Cauchy Integral formula.	CO2	L1	2M
	d	State Cauchy Residue theorem.	CO2	L1	2M
	e	Find the root of the equation $x^2-5=0$ by using Bisection method.	CO3	L2	2M
	f	Write the formula to find the root of an equation by Newton Raphson's method.	CO3	L1	2M
	g	Construct a forward difference table for the function $y = x^2$ for $x = 0, 1, 2, 3$.	CO5	L3	2M
	h	Write the normal equations used in fitting a second degree polynomial.	CO5	L1	2M
	i	Find $y^{(1)}(x)$, by Picard's method, given that $\frac{dy}{dx} = 1 + xy$; $y(0)=1$.	CO6	L2	2M
	j	Write the formula for Runge – Kutta method of fourth order.	CO6	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2		Verify that $u=x^2-y^2-y$ is harmonic in the whole complex plane and find	CO1	L4	10M
		a conjugate harmonic function v of u?			
		OR			
3	a	Determine whether the function $f(z)=2xy+i(x^2-y^2)$ is analytic.	CO1	L5	5M
	b	Find the analytic function $f(z)$ in terms of z whose real part is x^3-3xy^2 .	CO1	L1	5M
		UNIT-II			
4	a	Evaluate $\oint \frac{e^{2z}}{(z-1)(z-2)} dz$ where 'c' is the circle $ z =3$.	CO2	L5	5M
	b	Evaluate $\oint \frac{e^z}{(z-1)(z-4)} dz$ where 'c' is the circle $ z =2$.	CO2	L5	5M
		OR			
5		Evaluate $\oint \frac{4-3z}{z(z-1)(z-2)} dz$ where 'c' is circle $ z = \frac{3}{2}$ using residue theorem.	CO2	L5	10M

UNIT-III

Find a real root of the equation $e^x \sin x = 1$ using Newton – Raphson method.

CO3 L1

10**M**

OR

Solve the following system of equations by Jacobi method **CO4 L3 10M** 2x-3y+20z=25; 20x+y-2z=17; 3x+20y-z=-18.

UNIT-IV

From the following table values of x and y=tan x. Interpolate the values of y when x=0.12 and x=0.28.

CO₅ I

10M

X	0.10	0.15	0.20	0.25	0.30
У	0.1003	0.1511	0.2027	0.2553	0.3093

OR

9 Obtain a second degree polynomial to the data by method of least square

CO5

10M

X	1	2	3	4	5
Y	10	12	8	10	14

UNIT-V

Find the values of y(0.1) and y(0.2) by Picard's method given that CO6 L3 10M $y^1=y-x^2$, y(0)=1.

OR

Using Runge – Kutta method of fourth order, find y(0.1) and y(0.2) CO6 L3 10M given that $\frac{dy}{dx} = x + y$, y(0)=1.

O.P.Code: 23HS0832 R23 H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 NUMERICAL AND STATISTICAL METHODS

		NUMERICAL AND STATISTICAL METHODS			
Tin	ıe:	(Civil Engineering) 3 Hours Max	Mark	s: 70)
		PART-A		_	
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	Write the formula to find root of an equation by Newton Raphson's method	CO ₁	L1	2M
	b	Solve by Jacoby method [Only two iterations] $x + y = 3$; $3x - 2y = 4$	CO1	L2	2M
	c	Construct a forward difference table for the function $y = x^2$ for $x = 0, 1, 2, 3$	CO2	L2	2M
	d	State the two normal equation used in fitting a straight line	CO2	L1	2M
	e f	State Euler formula to solve $y' = f(x, y)$, $y(x_0) = y_0 at x = x_0 + h$.	CO3	L2 L2	2M 2M
		Find $y^{(1)}(x)$ by Picard's method, given that $\frac{dy}{dx} = 1 + xy$; $y(0) = 1$.			
	g	Define Population and size of population.	CO4	L1	2M
	h	Define point of estimator and interval estimator.	CO4	L1	2M
	i	Define Large sample Define level of significance.	CO5	L1	2M
	j	PART-B	COS	L1	2M
		(Answer all Five Units 5 x $10 = 50$ Marks)			
		UNIT-I			
2		Find the root of the equation $x e^x = 2$ using Regula-falsi method	CO1	L2	10M
		OR			
3		Apply Gauss Siedel iteration method to solve the equations	CO1	L2	10M
		20x + y - 2z = 17; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$			
		UNIT-II			
4		From the following table values of x and $y=tan x$. Interpolate the values of y	CO ₂	L3	10M
		when $x=0.12$ and $x=0.28$.			
		x 0.10 0.15 0.20 0.25 0.30			
		y 0.1003 0.1511 0.2027 0.2553 0.3093 OR			
5		Obtain a second degree polynomial to the data by method of least square	CO2	L3	10M
		X 1 2 3 4 5 Y 10 12 8 10 14			
		Y 10 12 8 10 14 UNIT-III			
6		Solve $y^1 = x + y$, given $y(1) = 0$ find $y(1.1)$ and $y(1.2)$ by Taylor's series	CO2	1.2	10M
U		method.	CO3	L3	TUIVI
		OR			
7		Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$.	CO3	L3	10M
		Find $y(0.1)$ and $y(0.2)$.			
		UNIT-IV			
8	a	Explain procedure for testing a hypothesis.	CO4	L2	5M
U		Explain characteristics of Estimators	CO4	L2	5M
	~~		201	~-	~1+I

- a Experience had shown that 20% of a manufactured product is of top quality. CO4 9 In one day's production of 400 articles only 50 are of top quality. Test the hypothesis at 0.05 level.
 - **5M**

L2

5M

b A sample of 400 items is taken from a population whose standard deviation is **CO4** 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38.Also calculate 95% confidence interval for the population.

UNIT-V

Two random samples reveal the following results: 10

CO5 L4 10M

Comple	Ciro	Sample	Sum of squares of deviations from the
Sample	e Size	Mean	mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

C a Samples of two types of electrical light blubs were tested for length of life and 11 following data were obtained

O 5	L5	5M

L5

5M

	Type I	Type II
Sample numbers	8	7
Sample mean	1234 hrs	1036 hrs
Sample S.D	36 hrs	40 hrs

Is the difference in the means sufficient to warrant that type I is superior to type II regarding length of life.

b The number of automobile accidents per week in a certain community are as CO5 follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period.

O.P.Code: 23HS0814

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 UNIVERSAL HUMAN VALUES-UNDERSTANDING HARMONY AND ETHICAL HUMAN CONDUCT (Common to All)

Time		(Common to All) B Hours Max.	B/C 1		
1 11110	5. C	PART-A	Mark	s: 70	1
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	Define the terms morality and empathy.	CO1	L1	2M
	b	Explain the term Natural Acceptance.	CO1	L2	2M
	c	Define the term Pre-Conditioning.	CO ₂	L1	2M
	d	Discuss activities of realization and understanding.	CO ₂	L2	2M
	e	Define the term Gratitude.	CO ₃	L1	2M
	f	Define the term Gratitude.	CO ₃	L1	2M
	g	What did you mean by conformance?	CO ₄	L1	2M
	h	Explain the understanding of harmony in nature.	CO ₄	L2	2M
	i	Define the term Professional Ethics.	CO ₅	L1	2M
	j	What is a Holistic Alternative?	CO ₅	L1	2M
		<u>PART-B</u>			
		(Answer all Five Units 5 x 10 = 50 Marks) UNIT-I			
2	a	Write a short note on continuous happiness and prosperity in the current scenario.	CO1	L1	5M
	b	Explain the key features of professional excellence.	CO ₁	L2	5M
		OR			
3		Illustratethe differencebetweenempathyand sympathy.	CO ₁	L3	5 M
	b	List out the benefits of empathy. UNIT-II	CO1	L1	5M
4		Write down the factors influencing harmony in society and family.	CO ₂	L1	5M
	b	Give a brief note on moral autonomy. What are the skills required to improve	CO ₂	L2	5M
		moral autonomy?			
_		Ordinal Market	~~		
5		Outline the programme to ensure self-regulation and Health.	CO2	L2	5M
	b	How can we ensure harmony in self? UNIT-III	CO2	L2	5M
6	a	Discuss briefly the outcome of identifying relationships based on exchanging physical facilities.	CO3	L2	5M
	b	Differentiate between intention and competence.	CO ₃	L1	5M
_		OR			
7		Illustrate the term justice. How does it lead to mutual happiness?	CO ₃	L3	5M
		List out the programs needed to achieve the comprehensive human goal. UNIT-IV	CO3	L1	5M
8		List out various components of harmony in nature.	CO4	L1	5M
	b	What do you mean by co-existence in nature?	CO ₄	L1	5M
		OR			
9	a	How can we say that 'nature is self-organized'?	CO ₄	L2	5M
	b	Explain the recyclability of any two units in <u>nature with</u> an example.	CO4	L2	5M
		UNIT-V			
10	a	What do you mean by 'universal human order'?	CO ₅	L1	5M
		Explain briefly the terms of innateness, self-organization, and self-expression. OR	CO5	L2	5M
11	a		CO5	L1	5M
		What do you mean by competence in professional ethics? Elaborate with	CO5	L1	5M
		examples.			∪171
		*** END ***			

O.P.Code: 23HS0835

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 PROBABILITY AND COMPLEX VARIABLES

(Electronics & Communications Engineering)

Tin	16.	3 Hours	May	Mark	ks: 70
1 111	10.	PART-A	wax.	Mair	25. 70
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	State Bayes' theorem.	CO ₁	L1	2M
	b	Define distribution function of a random variable?	CO ₁	L1	2M
	c	Define the moment generating function of a random variable.	CO ₂	L1	2M
	d	Define conditional density function of x given y?	CO ₂	L1	2M
	e	Variances $\sigma_X^2 = 6$ and $\sigma_Y^2 = 9$; correlation coefficient $\rho_{XY} = -2/3$ Find	CO ₃	L2	2M
		the covariance C_{xy}			
	f	Write the joint pdf of jointly Gaussian random variable.	CO ₃	L1	2M
	g	Prove that $f(z) = \overline{z}$ is not an analytic at any point.	CO4	L2	2M
	h	Define harmonic function.	CO ₄	L1	2M
	i	Show that $\oint_C (z-a)^n dz = 0$, $(n, any integer \neq -1)$, where C is the	CO ₅	L2	2M
		circle $ z - a = r$.			
	j	Expand e^z as Taylor's series in powers of (z-3).	CO ₅	L2	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	The probability that students A,B,C,D solve the problem are $\frac{1}{2}$,	CO ₁	L2	5M
		The producting that state its 71,5,5,5 solve the producti are 3,			
		$\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively if all of them try to solve the problem, what is			
		J J T			
	,	the probability that the problem is solved.	CO1	т.а	
	b	Two cards are drawn from a 52-card deck (the first is not replaced).	CO ₁	L2	5M
		(i) Given the first card is a queen, what is the probability that the second is also a queen?			
		(ii) What is the probability that both cards will be a queen?			
		OR			
3	a	If 2% of light bulbs are defective. Find the probability that (i) 2 defective	CO1	L2	5M
		items (ii) at least 3 defective items.			
	b	In a certain Junior Olympics, a contestant throw distances are well	CO ₁	L3	5M
		approximated by a Gaussian distribution for which $a_x = 30m$. In a			
		qualifying round, contestants must throw farther than 26m to qualify. In			
		the main event the record throw is $42m$.			
		(i) What is the probability of being disqualified in the qualifying round?(ii) In the main event what is the probability the record will be broken?			
		UNIT-II			
4		Show that the mean value and variance of the random variable having the	CO2	Ι.4	10M
-1			002	LIT	10111
		uniform density function are: $\overline{X} = E(X) = \frac{b+a}{2}$ and $\sigma_X^2 = \frac{(b-a)^2}{12}$			
		$\frac{2}{\mathbf{OR}}$			
5		Given the function $f_{X,Y}(x,y) = b(x+y)^2$; $-2 < x < 2$ and $-3 < y < 3$	CO ₂	L4	10M
		(i) Find the constant 'b' such that this is a valid joint density function.			
		(ii) Determine the marginal density functions $f_X(x)$ and $f_Y(y)$.			

		(iii) Are X and Y statistically independent?			
6		Random variables X and Y have the joint density	CO3	L4	10M
		$f_{X,Y}(x,y) = \frac{(x+y)^2}{40}$; $-1 < x < 1$ and $-3 < y < 3$.			
		(i) Find all the second-order moments of X and Y (ii) What are the variances of X and Y ? (iii) What is the Co-variance of X and Y ? OR			
7		Two random variables X and Y have means 1 and 2 respectively and variance 4 and 1 respectively. Their correlation coefficient is 0.4.new the random variable W and V are defined as V=-X+2Y; W=X+3Y. Find the (i) Means (ii) variance (iii) correlations (iv) correlation coefficient of V and W	CO3	L3	10M
8	a	Verify the function $f(z) = 2xy + i(x^2 - y^2)$ is analytic or not?	CO4	L2	5M
	b	Determine p such that the function $f(z) = \frac{1}{2} \ln(x^2 + y^2) - i \tan^{-1} \frac{px}{y}$	CO4	L2	5M
		be an analytic function.			
9	a	OR Find the analytic function whose imaginary part is	CO4	L3	5M
		$e^{-x}(x\cos y + y\sin y).$			
	b	If $f(z)$ is a regular function of z , prove that	CO ₄	L3	5M
		$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right) f(z) ^2 = 4 f'(z) ^2$			
		UNIT-V			
10	a	Evaluate $\int_0^{2+i} (\bar{z})^2 dz$, along the real axis to 2 and vertically to $2+i$.	CO5	L2	5M
	b	Evaluate $\oint_C \frac{e^z}{(z-1)(z-4)} dz$, where C is the circle $ z = 2$ by using Cauchy's integral formula.	CO5	L3	5M
		OR			
11	a	Expand the function $f(z) = \sin z$ in Tayler's expansion of in powers of	CO5	L2	5M
		$(z-\frac{\pi}{4}).$			
	b	Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$ using Cauchy's residue theorem.	CO5	L3	5M
		the DATE the			

O.P.Code: 23CS0508

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 OBJECT OREINTED PROGRAMING THROUGH JAVA

(Common to CSIT, CSE, CSM, CIC, CAD, CCC & CAI)

		(Common to CSIT, CSE, CSM, CIC, CAD, CCC & CAI)			
Tim	ie: 3	3 Hours	Max.	Mark	s: 70
		PART-A			
4		(Answer all the Questions $10 \times 2 = 20$ Marks)	CO1	т.	A3.5
1	a	86	CO1	L1	2M
	b	Define variables. List out different types of variables.	CO1	L1	2M
	C	List Access Specifiers in java.	CO2	L1	2M
	d	What is the use of "this" Keyword?	CO2	L1	2M
	e	What is the use of Interface?	CO3	L1	2M
	f	How to declare an array in Java?	CO3	L1	2M
	g	What is a package? How to define a package?	CO4	L1	2M
	h	What is an uncaught exception?	CO4	L1	2M
	i	What is difference between starting thread with Run () and start () method?	CO5	L1	2M
	j	List out JDBC Product Components.	CO5	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Explain the step-by-step process for creating, compiling & running java program using JVM.	CO1	L2	5M
	h	List and explain types of java statements	CO1	Т 1	5M
	U	OR	COI	LI	3171
3	a	List out the selection statements available in Java. Explain with an example.	CO1	L1	5M
	b	Develop a java program to design calculator with basic operations using	CO1	L5	5M
	~	switch.	001	Lie	5111
		UNIT-II			
4	a	Create a java program to display "Hello! Java" using Class, Object and	CO2	Ι 4	5M
7	а	Method.	CO2	1.4	3171
	h	Create a class object as parameter in method.	CO2	1.6	5M
	D	OR	CO2	LLO	JIVI
5	ล	Define constructor. Classify the types of constructors in Java.	CO2	1.3	5M
		Create a java program for pass by Reference.	CO2		5M
		UNIT-III	_002		D111
6			CO2	т 2	5M
6		Differentiate between method overriding and dynamic method dispatch. Categorize the different types in annotations.	CO3		5M
	D	OR	COS	1.4	5M
7	c		CO2	12	6M
,	а	What is an abstract class? Explain all the cases to implement abstract class.	COS	LL	OIVI
	h	Identify a storage of array in computer memory.	CO3	1.3	4M
	U	racinary a storage or array in computer memory.	003	LUJ	-114T

UNIT-IV

8	a	List and explain File handling functions using File class.	CO ₄	L1	6M
	b	Differentiate Checked Exception and Unchecked Exception.	CO4	L3	4M
		OR			
9	a	Illustrate Wrapper classes in java and its advantages.	CO4	L2	5M
*	b	Identify the use of throw, throws and throwable clause with examples.	CO4	L4	5M
		UNIT-V			
10	a	What is Multithreading? Illustrate the ways to create multiple threads in	CO5	L1	5M
		java.			
	b	Discuss about JDBC architecture and explain in detail.	CO5	L6	5M
		OR			
11	a	Define JDBC. Explain importance of JDBC.	CO5	L2	5M
	b	Explain about various scene graph and mouse events with example.	CO5	L5	5M
		*** END ***			

W

O.P.Code:23CE0107	R23	H.T.No.		

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 FLUID MECHANICS

(Civil Engineering)

		(Civil Engineering)			
Tim	e: :	3 Hours	Max.	Marl	ks: 70
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a	Define the term Specific weight.	CO1	L1	2M
	b	Define viscosity.	CO 1	L1	2M
	c	State Pascal's law.	CO ₂	L1	2M
	d	What is Centre of buoyancy?	CO ₂	L1	2M
	e	Define stream line.	CO ₃	L1	2M
	f	List the types of fluid flows.	CO ₃	L1	2M
	g	Define Reynolds number.	CO ₄	L1	2M
	h	What is the principle of pitot tube?	CO ₅	L1	2M
	i	Write the Chezy's formula.	CO ₄	L1	2M
	j	Define hydraulic gradient line.	CO6	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Explain the phenomenon of capillarity. Obtain an expression for	CO1	L2	5M
		capillary rise of a liquid.			
	b	When the pressure of liquid is increased from 3.5 MN/m2 to 6.5	CO ₁	L3	5M
		MN/m2 its volume is found to decrease by 0.08 percent. Calculate the			
		bulk modulus of elasticity of the liquid?			
		OR			
3		The space b/w two square parallel plates filled with oil. Each side of the	CO ₁	L3	10M
		plate is 60 cm. The thickness of oil film is 12.5. The upper plate which			
		moves at 2.5m/sec requires a force 98.1 N to maintain the speed.			
		Determine the			
		i) Dynamic viscosity of oil in poise.			
		ii) Kinetic viscosity of the oil in stokes, If the specific gravity of the oil			
		0.95.			
		UNIT-II			
4	a	Explain briefly the working principle of U-Tube differential manometer	CO ₂	L2	5M
		with a neat sketch.			
	b	Explain the pressure variation with temperature, density and altitude.	CO ₂	L2	5M
		OR			
5	a	Derive the expression for Center of Pressure of vertical plane surface.	CO ₂	L3	5M
	b	Explain briefly the pressure gauges.	CO ₂	L2	5M
		UNIT-III			
6		Obtain an expression for continuity equation for a three - dimensional	CO4	L3	10M
_		flow.			
		OR			
7	a	Define stream line, streak line and path line, stream tube	CO ₃	L1	5M
		The velocity potential function is given by $\emptyset = 5(x^2 - y^2)$. Calculate the	CO3	L3	5M
		velocity components at the point (4, 5).		= =	

	UNIT-IV			
8 2	Explain Pitot tube with neat sketch.	CO ₃	L2	5M
ŀ	An oil of Sg=0.8 is flowing through a venturimeter having inlet	CO ₃	L3	5M
	diameter 20 cm and throat dia 10cm. The oil - Hg differential			
	manometer shows a reading of 25 cm. Calculate discharge of oil			
	through horizontal venturimeter. Take Cd = 0.98.			
	OR			
9 a	State the momentum equation. How will you apply momentum equation	CO ₄	L2	6M
	for determining the force exerted by a flowing liquid on a pipe bend?			
ŀ	The water is flowing through a pipe having diameter of 20 cm and 10	CO ₅	L3	4M
	cm at section 1 & 2 respectively. The rate of flow through pipe is 35			
	lit/sec. The section 1 is 6m above the datum and section 2 is 4m above			
	the datum. If the pressure at the section 1 is 39.24 N/cm ² . Calculate the			
	intensity of pressure at the section 2.			
	UNIT-V			
10	Derive the expression for head loss in pipes due to friction by Darcy -	CO ₆	L3	10M
	Weisbach equation and chezy's formula.			
	OR			
11 a	Derive the expression for flow through parallel pipes.	CO ₆	L3	5M
b	Three pipes of lengths 800m, 500m & 400m & of dia 500mm, 400mm	CO ₆	L3	5M
	& 300mm respectively are connected in series. These pipes are replaced			
	& 300mm respectively are connected in series. These pipes are replaced			

O.P.Code: 23EE0209

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 DC MACHINES AND TRANSFORMERS

		(Electrical and Electronics Engineering)			
Tim	e: 3	3 Hours	Max.	Mark	s: 70
		PART-A			
1		(Answer all the Questions $10 \times 2 = 20$ Marks)	CO1	T 4	27.5
1	a	Define commutation.	CO1	L1	2M
	b	State the effects of armature reaction in DC machine.	CO1	L2	2M
	C	List the various speed control methods of DC shunt motors.	CO2	L1	2M
	d	What is the significance of back emf?	CO2	L1	2M
	e	Draw the typical equivalent circuit of a single-phase transformer.	CO3	L2	2M
	f	Define all day efficiency of a transformer. What is Sumpner's test?	CO3	L1	2M
	g h	Specify the applications of autotransformer.	CO5	L1 L2	2M 2M
	i	What are the various types of three phase transformer connections?	CO5	L2 L1	
	j	Mention the applications of Scott connection.	CO5	L1	2M
	J	PART-B	COS	LI	2M
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2		A 75 kW, 500V, DC shunt motor has 4-poles and wave connected	CO ₁	L4	10M
		armature winding with 492 conductors. The flux per pole is 0.04Wb and			
		the full load efficiency is 91%. The armature and commutating pole			
		windings have a total resistance of 0.08? and the shunt field resistance is			
		200?. Calculate for full load 1) The speed, 2) Useful torque delivered to			
		the load and 3) The torque developed.			
		OR			
3		Explain the process of commutation of DC generator with neat sketches. UNIT-II	CO1	L2	10M
4		What is the necessity of starter? Draw the diagram of a 3point starter and	CO2	L4	10M
		Explain.			1+
		OR			
5		Explain the Hopkinson's test for determining efficiency of two similar	CO ₂	L2	10M
		DC shunt machines.			
		UNIT-III			
6	a	Draw and explain the No-load phasor diagram of 1φ transformer	CO ₃	L4	5M
		Draw and explain the phasor diagram of transformer when it is operating		L4	5M
		under load.			
		OR			
7	a	Why is the rating of transformer given in KVA? List out the applications	CO ₄	L2	4M
		of transformer.			
	b	A transformer with normal voltage impressed as a flux density of 1.2T	CO ₄	L2	6M
		and a core loss consisting of 1200W eddy current losses and 3500W			
		hysteresis losses. What do these values become under the following			
		conditions.			
		(i) Increasing the applied voltage by 5% at rated frequency.			
		(ii) Reducing the frequency by 5% with normal voltage impressed.			
		(iii) Increasing both impressed voltage and frequency by 5%			
		UNIT-IV			
8		Deduce an expression for the load shared by the two transformers with	CO ₄	L4	10M
		unequal voltage ratios.			

OR

a transformer.
b The total core loss of a specimen of silicon steel is found to be 1500W at 50Hz. Keeping the flux density constant, the loss becomes 3000W. When the frequency is raised to 75Hz, calculate separately the hysteresis and eddy current losses at each of those frequencies.

a Explain in detail about separation of hysteresis and eddy current losses in CO4

UNIT-V

Explain in detail about open-delta connection and write the advantages, CO5 L2 10M disadvantages and uses of open delta connection

OR

A 50Hz Scott-connected transformer supplied an unbalanced 2-phase load at 200V per phase. For the leading phase (phase "A") the load has a resistance of 10ohms and an inductance of 42.3mH. For the other phase, the load consists of a resistor of 13.3 ohms and a capacitor of 318 microfarads in series. Neglecting the magnetizing current and the internal impedance of the transformer, calculate the line currents on the 3-phase side. The main transformer primary/secondary turns ratio is 12/1.

*** END ***

5M

10M

CO5

R23 Q.P.Code: 23CS0507

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 ADVANCED DATA STRUCTURES & ALGORITHM ANALYSIS

(Common to CSE, CIC, CCC, CAI, CSM & CAD)

			Commo	1 10 051	, 010, 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i, 001/1 t	e crib)			
Tim	e: 3	3 Hours							Max.	Marl	ks: 70
					<u>P</u>	ART-A					
			(Ans	swer all	the Ques	stions 10	x 2 = 20	Marks)			
1	a	What do you mean	by algo	rithm? I	List some	of the p	roperties	s of it.	CO1	L2	2M
	b	Define Balance Fa	ctor.						CO1	L1	2M
	c	What is Articulation	n point?						CO2	L1	2M
	d	Write the application	ons of H	eap tree					CO ₂	L3	2M
	e	Differentiate greed	y and dy	namic p	rogrami	ning.			CO3	L2	2M
	f	What is 0/1 knapsa	ick probl	em.					CO3	L1	2M
	g	Define Backtrackir	ıg.						CO4	L1	2M
	h	What is Branch and	d Bound	?					CO4	L1	2M
	i	Define P class and	NP Clas	s.					CO5	L1	2M
	j	What is determinis	tic algor	ithm?					CO5	L1	2M
					PA	ART-B					
			(Aı	nswer al	l Five U	nits 5 x 1	10 = 50 N	Marks)			
					U	NIT-I					
2	Di	iscuss briefly with	suitable	examp	le about	Big 'O	' notatio	on and Thet	a CO1	L2	10M
		otation 'Θ'.		1							20112
					7	OR					
3	a	Write the application	ons and (Operatio	Samples V. J.	Continue.			CO1	L3	5M
		Elaborate the B-Tre		Toward 60	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OW	COUNTY LONG.		ole.	CO1	L3	5M
				or open	No. of Co.	NIT-II	10 01101111		001	130	CIVE
4	Δ 1	nalyze the working	ctroteox	of ma	_		istrata th	o process o	f CO2	Ι 4	10M
7		erge Sort algorithm			•			-	1 CO2	L4	101/1
	141	erge sort argoriumi	tor the g	iven uai		c, 22, 78, OR	05, 57,	91 and 15.			
5	9	Explain about Conv	vev Hull	with av		OK			CO2	L2	5M
5		Explain the Genera			_	Conquer	Method		CO2	L2 L2	5M
	U	Explain the Genera	i ivictilot	I OI DIV			Mictiou.		CO2	LL	3111
	171	1 1			-	IT-III			~~~		407.5
6		aborate job sequen	_		-		-			L6	10M
		ven the jobs, th				sociated	protits	as show	1		
	be	low.Calculate maxii	num ear	ned prof	tit.						
		Jobs	J1	J2	Ј3	J4	J5	J6			
		0005	91	U.L.	00	9.1	90	90			

Jobs	J1	J2	J3	J4	J5	J6
Deadlines	5	3	3	2	4	2
Profits	200	180	190	300	120	100

OR

7	a Discuss about Optimal binary search tree with suitable example.	CO ₃	L2	5M
	b Build any one application of dynamic programming with an example.	CO ₃	L6	5M

UNIT-IV

8 Construct the State space tree for the profits={3,5,6,10} and CO4 L4 10M weights={2,3,4,5},n=4 and m=8 (Capacity). Apply the backtracking for 0/1 Knapsack and also find the Maximum profit.

OR

9	a Describe the general method of branch and bound.	CO4	L1	5 M
	b Explain the role of the state-space tree in branch and bound techniques.	CO4	L4	5M
	France 1			

UNIT-V

10 Build the non-deterministic sorting algorithm and also analyze its CO5 L6 10M complexity.

OR

a Explain why Clique Decision Problem is NP-Hard. Explain.
b Explain why Traveling Salesperson Decision Problem is NP-Hard.
CO5 L3 5M
Explain.

O.P.Code: 23CI0601

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 DATA STRUCTURES & ALGORITHMS

		(Computer Science & Information Technology)			
Tim	e: 3		Max. Ma	rks: '	70
		PART-A			
1		(Answer all the Questions $10 \times 2 = 20$ Marks)	601		
1	a	What is an AVL tree? Give one example.	CO1	L2	2M
	b	What is B-Tree? Give one example.	CO1	L1	2M
	c	What is directed and undirected graph?	CO2	L2	2M
	d	Construct Strassen's 2×2 matrix.	CO2	L1	2M
	e	What is Spanning Tree?	CO3	L2	2M
	f	Write the dynamic programming.	CO3	L1	2M
	g	What is Branch and Bound?	CO4	L2	2M
	h	State the Container problem.	CO4	L1	2M
	i	Define P class and NP Class.	CO5	L2	2M
	j	What is Chromatic Number?	CO5	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Discuss factors affecting the time complexity	CO1	L3	5M
	b	Compare between Priori analysis and Posteriori analysis.	CO1	L2	5M
		OR			
3	a	Explain different AVL rotations with suitable examples.	CO1	L2	5M
	b	Write the applications and operations of an AVL tree.	CO1	L4	5M
		UNIT-II			
4	a	Construct Max Heap Tree for the following elements 32, 15, 20, 30, 1	2, CO2	L2	5M
		25, 16.			
	b	Sort the records with the following index values in the ascending ord	ler CO2	L3	5M
		using Quick Sort algorithm, 10,80,30,90,40,50 and 60.			
		OR			
5	a	Explain the General Method of Divide and Conquer Method.	CO2	L2	5M
	b	Discuss about Convex Hull with example.	CO2	L4	5M

UNIT-III

Construct an optimal solution for Knapsack problem, where n=7,M=15 CO3 L2 10M and (p1,p2,p3,p4,p5,p6,p7) = (10,5,15,7,6,18,3) and (w1,w2,w3,w4,w5,w6,w7) = (2,3,5,7,1,4,1) by using Greedy strategy.

OR

Construct an algorithm for All pairs of shortest path and calculate shortest CO3 L2 10M path between all pairs of vertices by using dynamic programming method for the following graph.

8 Compare Back Tracking and Branch and Bound methods by taking an CO4 L2 10M example.

OR

9 Construct the State space tree for the profits={3,5,6,10} and CO4 L2 10M weights={2,3,4,5},n=4 and m=8 (Capacity). Apply the backtracking for 0/1 Knapsack and also find the Maximum profit.

UNIT-V

Explain why Clique Decision Problem is NP-hard with suitable an CO5 L2 10M example.

OR

a Discuss about Chromatic Number Decision Problem in detail.
b Describe Job Shop Scheduling in NP Hard Scheduling Problem.
CO5 L2 5M
CO5 L4 5M

O.P.Code:23CE0106

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 **Strength of Materials**

(Civil Engineering)

Time: 3 Hours

PART-A

(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)

1	a	Define Stress and give its units. What are different types of stress?	CO ₁	L1	2M
	b	Define the terms the terms: (i) Modulus of elasticity (iii) Bulk modulus.	CO1	L1	2M

- c Define beam? What are the different types of beams?
- CO₂ L1 2M**d** Define the terms shear force and bending moment. CO₂ L12M
- e Define the terms Bending stress and section modulus.
- CO₃ L₁ 2Mf What are the assumptions made in theory of simple bending? CO₃ L₁ 2M
- g What is deflection of beam? What are the causes of deflection in beams? **CO4** L1 **CO4**
- h What are the methods for finding out the slope and deflection at a section?
- i Define the terms Column, Strut and Crippling load. CO₅ L₁ 2M CO₅ L1
- What are the different types of end Conditions of Columns?

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

2 Draw Stress – Strain graph for mild steel bar subjected to tensile loading CO₁ L3 10 M and mark salient points on the graph.

OR

3 A hollow cast iron cylinder 4 m long, 300 mm outer diameter, and thickness of metal 50 mm is subjected to a central load on the top when standing straight. The stress produced is 75x10³ kN/m². Assume Young's Modulus for cast iron as 1.5x108 kN/m² and find (i) magnitude of load (ii) longitudinal strain produced, and (iii) total decrease in length.

UNIT-II

- a Define shear force and bending moment. 4
 - **b** A cantilever beam of 2 m span is subjected to a gradually varying load from 2kN/m to 5 kN/m as shown in figure. Draw the shear force and bending moment diagrams for the beam.

CO₂ L1 5M

L4

CO₁

Max. Marks: 70

2M

2M

2M

10M

L1

CO₂ **L4 5M**

a List and explain different types of beams based on support conditions. CO2 , L1 **5M b** A cantilever beam AB, 2 m long carries a uniformly distributed load of . CO2 . L4 **5M** 1.5 kN/m over a length of 1.6 m from the free end. Draw shear force and bending moment diagrams for the beam. 1.5 kN/m 1.6 m 2 mUNIT-III A timber beam of rectangular section supports a load of 20kN uniformly CO₃ 10M 6 distributed over a span of 3.6 m. If depth of the beam section is twice the width and maximum stress is not to exceed 7 MPa, find the dimensions of the beam section. OR 7 A cast iron water pipe of 500 mm inside diameter and 20 mm thick is CO₃ **L4** 10M supported over a span of 10 m. Find the maximum stress in the pipe metal, when the pipe is running full. Take density of cast iron as 70.6 kN/m³ and that of water as 9.8 kN/m³. UNIT-IV Using double integration method determine the maximum slope and CO₄ L₃ 10M 8 deflection for a simply supported beam subjected to uniformly distributed load throughout the length of the beam. OR A timber beam of rectangular section has a span of 4.8 m and is simply 10M 9 CO₄ L4 supported at its ends. It is required to carry a total load of 45 kN uniformly distributed over the whole span. Find the value of the breadth (b) and depth (d) of the beam, if maximum bending stress is not to exceed 7 Mpa and maximum deflection is limited to 9.5 mm. Take E for the timber as 10.5 GPa. UNIT-V a What are the assumptions made in Euler's theory? CO₅ L1**5M b** Find the ratio of buckling strength of a solid column to that of a hollow CO₅ L3 5M column of the same material and having the same cross –sectional area. The internal diameter of the hollow column is half of its external diameter. Both the columns are hinged and the same length. A hollow alloy tube 4 m long with external and internal diameters of 40 CO₅ L4**10M** 11 mm and 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 kN. Find the buckling load for the tube with both ends pinned. Also find the safe load on the tube, taking a factor of safety as 5.

O.P.Code: 23EC0402

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 **ELECTRONIC DEVICES AND CIRCUITS**

		(Electronics & Communications Engineering)			
Tim				Mark	s: 70
		<u>PART-A</u>			
1	_	(Answer all the Questions $10 \times 2 = 20$ Marks)	604	т о	27.5
1	a	Define efficiency of a rectifier.	CO4	L2	2M
	b	List the applications of clampers.	CO4	L1	2M
	c	List the types of BJT and operating regions.	CO1	L1	2M
	d	Discuss the need of biasing.	CO4	L6	2M
	e	List out the characteristics of CE amplifier	CO2	L1	2M
	f	How is r_{π} (input resistance) calculated in the hybrid- π model?	CO3	L1	2M
	g	State the application of JFET	CO2	L1	2M
	h	Classify the types of JFET with its symbols.	CO2	L3	2M
	i	Define Transconductance.	CO5	L1	2M
	j	Draw an alternative representation of the T model.	CO5	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	, , , , , , , , , , , , , , , , , , , ,	CO4	L4	5M
	b	A Half Wave Rectifier is supplied from a 230V, 50 Hz supply with a	CO ₃	L4	5M
		step-down ratio of 3:1 to a resistive load of $10k\Omega$. The diode forward			
		resistance is 75Ω while transformer secondary is 10Ω . Calculate			
		maximum, average, RMS values of current, DC output voltage, efficiency			
		of rectification.			
		OR			
3	a	Compare the characteristics of LCD with LED.	CO ₁	L4	3M
	b	With basic structure, symbol and equivalent circuit explain working of	CO ₂	L2	7M
		UJT and draw characteristics.			
		UNIT-II			
4	a	With neat circuit diagram, explain the Input and Output characteristics of	CO ₄	L5	5M
		a BJT in CB Configuration.			
	b	Discuss Thermal Runaway and Thermal Resistance.	CO ₂	L6	5M
		OR			
5		Explain self-bias of a Transistor with neat circuit diagram.	CO ₂	L2	5M
	b	Consider the self-bias circuit where $Vcc = 22.5$ volts, $Rc = 5.6k\Omega$, $R2 =$	CO ₃	L3	5M
		$10k\Omega$ and R1 = $90k\Omega$, hfe = 55, V_{BE} =0.6V. the transistor operates in			
		active region. Determine i) Operating point ii) stability factor.			
		UNIT-III			
6	a	Explain the thermal voltage VT and how does it affect the small-signal	CO1	L2	5M
		model?			
	b	Evaluate a voltage gain for transistor amplifier as shown in figure,	CO ₂	L5	5M
		assume $\beta = 100$.			

OR

- a Discuss about separating the signal and the DC quantities with suitable CO4 **6M** diagrams.
 - b Design the small-signal, common-collector amplifier with equivalent CO2 **4M** circuit.

UNIT-IV

- a Explain the construction & operation of an enhancement type NMOS CO2 **6M** Transistor.
 - **b** Consider a process technology for which $L_{min} = 0.4 \mu m$, tox = 8 nm, $\mu_n = CO3$ 4M 450 cm²/V-s, and Vt=0.7 V.
 - (i) Calculate Cox and k'n
 - (ii) For a MOSFET with W/L = 8 μ m/0.8 μ m, calculate the values of V_{GS} and V_{DSmin} needed to operate the transistor in the saturation region with a de current $I_D = 100 \mu A$.
 - (iii) For the device in (ii), calculate the value of V_{GS} required to cause the device to operate as a 1000- Ω resistor for very small V_{DS}

- a Discuss the characteristic parameters of the JFET and show the relation **L6 8M** 9 CO₃ among the JFET parameters μ , rd and gm. CO₂ L1 2M
 - **b** What is modeling of Body Effect?

UNIT-V

- a Compare the various parameters of CS, CG & CD amplifiers. **L4 CO6** 5M 10
 - **b** A MOSFET is to operate at $I_D = 0.1$ mA and is to have $g_m = 1$ mA/V. If **CO3** $K'_n = 50 \mu \text{ A/V}^2$, Compute the required W/L ratio and the over drive voltage.

OR

- graphical CO5 a Illustrate the **MOSFET** Transconductance gm with 5M 11 construction.
 - b Evaluate the overall voltage gain of the Common-Source Amplifier CO5 **5M** without a Source Resistance with suitable circuits.

*** END ***

L3

5M

O.P.Code:23EE0208

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 ELECTRICAL CIRCUIT ANALYSIS-II

(Electrical & Electronics Engineering)

Time: 3 Hours

Max. Marks: 70

PART-A

(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)

- a A balanced load of (8+j6) Ω/ph is connected in delta across 3-Φ, 400V, CO1 L3 2M
 50Hz supply. Find the line current.
 - b What is phase sequence? Distinguish between unbalanced source and CO1 L2 2M unbalanced load.
 - c What is the time constant of an RC circuit? CO2 L1 2M
 - d Determine the Laplace transform of unity, that is, f(t) = 1. CO2 L2 2M
 - e How will you find the π -equivalent of a given network when its y- CO3 L1 2M parameters are known?
 - f What are the open-circuit impedance parameters of a two-port network? CO3 L1 2M
 - g Determine the Fourier coefficients. CO4 L1 2M
 - h What are the conditions which a periodic function must satisfy to have its CO4 L1 2M Fourier series expansion?
 - i A band-pass filter has a resonant frequency of 950 Hz and a bandwidth of CO5 L2 2M 2700 Hz. Find its lower and upper cut-off frequencies.
 - j Draw constant-k low pass filter and high pass filter.

CO5 L3 2M

10M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

A delta-connected generator with phase sequence of RBY is connected to CO1 L a delta connected load with phase sequence RYB as shown in Fig. 1. Determine the voltages of generator and load by taking $V_{RY}=120 \angle 0^{\circ} V$. Also calculate the phase and line currents of the load.

OR

3 Discuss in detail the three phase 4-wire circuits with star connected balanced loads and power consumed by a balanced star-connected load.

CO1 L2 10M

UNIT-II

4 a For the circuit shown in figure, find an expression for the current supplied CO2 L3 10M by the source. How much time it will take for the current to reach 25 mA?

Assume the circuit to be initially relaxed.

- 5 Define Laplace transform of standard function and find Laplace CO2 L3 10M transform of standard function for the following.
 - i. Evaluate $L[3e^{-5t} + 8\cos 3t + 2\sinh 2t 5t^3]$
 - ii. Evaluate L[sin 2t cos 3t]

UNIT-III

6 Define z and y parameters of a typical four-terminal network. Determine CO3 L2 10M the relationship between the z and y parameters

OR

- 7 a Develop an equation for Hybrid Parameters (h-Parameters) and Inverse CO3 L2 5M Hybrid Parameters (g-Parameters).
 - **b** Two two-port networks are connected in cascade. Prove that the overall transmission parameter matrix is the product of individual transmission parameter matrices.

UNIT-IV

OR

8 Stipulate the complex Fourier series for periodic waveform.

CO4 L4 10M

L3

L1

10M

5M

5M

CO5

5M

- 100/LE

9 Calculate the impedance consisting of R and L and the power factor of a CO4 L3 10M circuit whose expression for voltage and current are

$$v(t)=250 \sin 314t + 50 \sin (942t + 30\circ)(V),$$

 $i(t)=17.7 \sin (214t + 45\circ) + 1.583 \sin (942t + 41.6\circ)(A)$

$$i(t)=17.7\sin(314t-45\circ)+1.583\sin(942t-41.6\circ)(A)$$

UNIT-V

A series-resonant band stop filter consist of a series resistance of $2k\Omega$ across which is connected a series-resonant circuit consisting of a coil of resistance 10Ω and inductance 350 mH and a capacitor of capacitance 181 pF. F if the applied signal voltage is $10\angle 0^\circ$ of variable frequency, calculate (a) resonant frequency f_0 ; (b) half-power bandwidth B_{np} ; (c) edge frequencies f_1 and f_2 ; (d) output voltage at frequencies f_0 , f_1 and f_2 .

AC

- a Design the low pass RL filter and illustrate the frequency-phase response curve.
 - **b** Explain in the detail with neat illustration of bandpass Filter network. CO5 L1

O.P.Code:23ME0304

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 MECHANICS OF SOLIDS

		(Mechanical Engineering)			
Time	e: 3		Max. Ma	arks:	70
		<u>PART-A</u>			
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	State Hook's law.	CO1	L2	2M
	b	Define Factor of safety.	CO1	L1	2M
	c	Classify the types of beams.	CO ₂	L1	2M
	d	State point of contra flexure.	CO ₂	L2	2M
	e	Write the assumptions of simple bending.	CO ₃	L2	2M
	f	Draw the shear stress distribution in solid circular shaft.	CO3	L2	2M
	g	State Maculays method.	CO ₄	L2	2M
	h	What are the assumptions made in Torsion equation.	CO ₄	L2	2M
	i	State circumferential stress (or) hoop stress.	CO ₅	L2	2M
	j	Write limitations of rankines formula.	CO ₅	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)		%	
		UNIT-I			
2	a	A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull	CO1	L3	5M
		of 20 kN. If the modulus of elasticity of the material of the rod is 2 x			
		10 ⁵ N/mm ² determine :(i) stress,(ii) strain, and: (iii) elongation of the	.		
		rod			
	b	Find the Young's Modulus of a brass rod of diameter 25 mm and of	CO1	L3	5M
		length 250 mm. which is subjected to a tensile load of 50 kN when the			
		extension of the rod is equal to 0.3 mm.			
		OR			
3	a	Define and Derive Mohr's circle with neat sketch	CO1	L2	5M
	b	The tensile stresses at a point across two mutually perpendicular	CO1	L3	5M
		planes are 120 N/mm ² and 60 N/mm ² . Determine the normal,)		
		tangential and resultant stresses on a plane inclined at 30° to the axis	,		
		of minor stress using Mohr's circle.			
		UNIT-II			
4		A cantilever beam of length 2m carries the point loads as shown in	CO2	L3	10M
		Fig. Draw the SFD and BMD for the given beam.			
		300 N 500 N 800 N			
		∄ _A ↓ _B ↓ _C ↓ _D			

OR

A simply supported beam of length 5M , carries point load of 3 kN and 5 6 Kn at distance of 2m and 4m from the left end. Draw the shear force and bending moment for the beam.

10M

CO₂

L3

UNIT-III

A square beam 20 mm x 20 mm in section and 2 m long is supported at the ends. The beam fails when a point load of 400 N is applied at the centre of the beam. What uniformly distributed load per metre length will break a cantilever of the same material 40 mm wide, 60 mm deep and 3 m long.

OR

CO₃

CO4

CO5

CO5

L3

L3

L3

L3

10M

10M

10M

10M

10M

A beam of triangular cross-section is subjected to a sheer force of 50 kN. The base width of the section is 250mm and height 200mm. The beam is placed with its base horizontally. Find the maximum shear stress and the shear stress at the N.A.

UNIT-IV

beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a uniformly distributed load of 9 KN/m run over the entire span of 5 m. If the value of E for the beammaterial is 1 x 10⁴ N/mm², find:(i) The slope at the supports and (ii) Maximum deflection.

OR

A solid circular shaft transmits 75 kW power at 200 r.p.m. Calculate the shaft diameter, if the twist in the shaft is not to exceed 1° in 2 metres length of shaft, and shear stress is limited to 50 N/mm^2 . Take C = $1 \times 10 \text{ s N/mm}^2$

UNIT-V

A cylindrical shell 90 cm long 20 cm internal diameter having thickness of metal as 8 mm is filled with fluid at atmospheric pressure. If an additional 20 cm³ of fluid is pumped into the cylinder, find (i) the pressure exerted by the fluid on the cylinder and (ii) the hoop stress induced. Take $E = 2 \times 105 \text{ N/mm}^2$ and $\mu = 0.3$.

OR

A column of timber section 15 cm x 20 cm is 6 metre long both ends being fixed. If the Young's modulus for timber =17.5 KN/mm², determine: (i) Crippling load and (ii) Safe load for the column if factor of safety = 3.

O.P.Code: 23CE 0105

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 SURVEYING

(Civil Engineering)

Time	e: 3	3 Hours		(Civil Engin	neering)	Max.	Marl	rs· 70
	•	, 110 u 15		PAI	RT-A	man.	Mai I	23. 70
(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)								
1	a	List any four a	ccessories in sur	rveying.		CO1	L1	2M
	b	Mention the va	arious types of ta	ape.		CO1	L1	2M
	c	Define Levelli	ng.			CO2	L1	2M
	d		n Simpson's one	third rule.		CO2	L1	2M
	e	Define centeri				CO3	L1	2M
	f		etween face left		observation.	CO3	L2	2M
	g	_	t length of a curv			CO5	L1	2M
	h		te on infrared tŷ	-	trument.	CO5	L1	2M
	i	•	nean by nadir po	oint?		CO6	L1	2M
	j	Make a note or	n Isocentre.	DAT	OW D	CO6	L1	2M
			(A		<u>RT-B</u>			
			(Answ	,	its 5 x 10 = 50 Marks)			
2			about the prima	•	f surveying.	CO1	L2	5M
	b	Mention the ol	ojectives of surv			CO1	L1	5M
_					OR			
3		Explain the pri	ismatic compass		their parts, With neat sketch.	CO1	L2	10M
4		The following	staff readings v	were observed	successively with level, the	CO2	L4	10M
		readings: 0.87 2.030 and 3.76 benchmark of and reduce the	5, 1.235, 2.310, 65. The first rea elevation 132.13	1.385, 2.930, ding was taken 35m. Enter the ne usual check	ne second, fourth and eighth 3.125, 4.125, 0.120, 1.875, n with the staff held upon a readings in level book-form s. Find also the difference in			
			the first and the	-)R			
5		Define contour	. State the vario		ics of contour lines.	CO2	L1	10M
					T-III			
6		Determine the	R.L. of the top of		n the following data. Station	CO3	1.3	10M
			line with the top		9	000		20112
			Reading on	Vertical				
		Inst Station	BM(m)	Angle	R.L of BM			
		A	1.085	10°48′	R.L of BM = 150.000m			
		В	1.265	7°12′	AB=50 m			
				0	R			
7	a	Write short not	tes on methods o	of adjusting the	traverse.	CO4	L1	5M
	b	Briefly explain	the Bowditch's		usting the traverse. T-IV	CO4	L2	5M
8		Two tangents	intersect at chai		The angle of intersection is	CO5	L2	10M
		_		_	out a curve of radius 250 m			
				•	rvals may be taken as 20 m.			
					count of the vernier is 20".			
		Calculate the d	ata for field che	_	nR			

9	Briefly explain the types of EDM instrument.	CO5	L2	10M
	UNIT-V			
10	Brief explain with sketch the relief and tilt displacements.	CO6	L2	10 M
	OR			
11	Explain in detail about stereoscopy in photogrammetric surveying.	CO6	L2	10M
	*** END ***			

Q.P.Cod	e:23EC	0401
---------	--------	------

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B. Tech. II Year I Semester Supplementary Examinations August-2025
SIGNALS, SYSTEM AND STOCHASTIC PROCESSES

(Electronics and Communication Engineering)

Time: 3 Hours	5.50	Max. Marks: 70

Œ		PART-A			
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	Discuss about causal and non-causal, Time invariant and time variant systems.	CO1	L2	2M
	b	List any two properties of Fourier Series.	CO2	L1	2M
	c	Find the fourier transform of e ^{-at} u(t)	CO2	L3	2M
	d		CO2	L1	2M
	e	TT 71	CO4	L1	2M
	f	Explain about Paley-Wiener criterion.	C04	L2	2M
.	g	TO 1.00	CO5	L4	2M
	h	How two random processes X(t)& Y(t) are said to be independent.	CO5	L2	2M
	i	Define Power Spectrum Density.	CO2	L2 L1	
	j	List any two properties of Power Spectrum Density.	CO2	L1	2M 2M
		PART-B		2	
		(Answer all Five Units 5 x 10 = 50 Marks)			
2	a	Define energy and power signals. Find the signal $x(t) = e^{-2t} u(t)$ is a power signal or energy signal.	CO1	L3	5 M
	h	Discuss the following.	001	τ ο	# T T #
		(i) Even and Odd signals	CO1	L2	5M
		(ii) Periodic and Non-Periodic Signals. OR			
3	a	Find the odd and even components of the signal $x(t) = cost + sint + cost sint$.	CO1	L3	5M
4	b	Discuss about dirichlets conditions for fourier series. UNIT-II	CO2	L2	5M
4		Find the Nyquist rate of the following signals. (a) $x(t)=2 \sin 10\pi t$. Sin $50\pi t$	CO3	L3	10M
		(b) $x(t) = \cos^2 10\pi t$ OR			
5	a	Explain convolution property of Laplace transform.	CO4	L3	5M
	b	Find the Laplace transform of $x(t)=e^{-t}u(-t)+e^{5t}u(t)$	CO4		5M
		UNIT-III	CO4	L3	5M
6		Define linear time variant system.	CO1	L1	5M
	b	For a discrete system having $x[n] = \{1,2,3,4\}$ and $h[n] = \{1,2,1,-1\}$ find the	CO4	L3	5M
		output response y[n]. OR		£1	
7		Derive the relationship between the bandwidth and rise time of ideal low pass Filter.	CO4	L3	10M
*		UNIT-IV			
8		Define Wide Sense Stationary Process and write it's conditions.	CO6	L1	5M
	b	A random process is given as $X(t) = At$, where A is a uniformly distributed			5M
		random variable on (0,2). Find whether X(t) is wide sense stationary or not.			
		OR			

9		Explain about the following random process (i) Mean ergodic process	CO	5 L2	10M
		(ii) Correlation ergodic process			
		(iii) Gaussian random process			
		UNIT-V			
10		Derive the relationship between cross-power spec correlation function.	etral density and cross CO2	L3	10M
		OR			
11	a	Consider a random process $X(t) = \cos(\omega t + \theta)$ where θ is a uniform random variable in $(0, \pi/2)$. Find the	ω is a real constant and CO6 e average power in the	L3	5M
		process.			- 5,
	b	b Define and derive the expression for average power of *** END ***	f Random process. CO6	L1	5M
		121112			

O.P.Code:23EE0207

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B. Tech. II Year I Semester Supplementary Examinations August-2025 ELECTROMAGNETIC FIELD THEORY

(Electrical & Electronics Engineering)

Time: 3 Hours

Max. Marks: 70

CO6 L1

2M

PART-A

(Answer all the Questions $10 \times 2 = 20$ Marks)

1	a	Define stokes theorem.	CO1	L1	2M
	b	Describe the relationship between potential gradiant and electric field.	CO1	L2	2M
		Define dielectrics.	CO2	L1	2M
	d	Define electric dipole.	CO ₂	L1	2M
	e	State Biot –Savarts law.	CO3	L1	2M
	f	Define magnetic moment		L1	2M
	g	Define self inductance.		L1	
	h	Describe the energy density in magnetic field.			2M
•	i	Define skin depth.	CO6	L2	2M
	j	Define displacement current.	CO6	L1	2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

- a Two points A (2,2,1) and B (3,-4,2) are given in the cartesian systems. CO1 2 5M Obtain the vector from A to B and a unit vector directed from A to B.
 - b State and explain Coulomb's law indicating clearly the units of quantities CO1 5M in the equation of force.

OR

- a Determine whether or not the following potential fields satisfy the CO1 3 5M Laplace's equation $V=x^2-y^2+z^2$ & ii) $V=r \cos \phi +z$.
 - b Transform the vector field W=10 a_x -8 a_y +6 a_z to cylindrical co-ordinate 5M system at point P (10, -8, 6).

UNIT-II

OR

- Explain the boundary conditions of two perfect dielectrics materials. 4 CO₂ L4 10M
- Two pint charges 1.5nC at (0,0,0.1) and -1.5nC at (0,0,-0.1) are in 5 CO₂ L3 10M free space. Treat the two charges as a dipole at the origin and find the potential at p(0.3,0,0.4).

UNIT-III

A Point charge of Q=-1.2 C has a velocity V=(5 a_x +2 a_y -3 a_z)m/s. Find CO3 L4 10M the magnitude of the force exerted on the charge if i) E= -18 a_x +5 a_y -10 a_z V/m and ii) B=-4 a_x +4 a_y +3 a_z T, iii) Both are present simultaneously.

OR

Evaluate both sides of the stokes theorem for the filed H=6xy a_x -3y² a_y CO4 L3 10M A/m and the rectangular path around the region 2<x<5, -1<y<1, Z=0. Let the positive direction of ds be a_z .

UNIT-IV

8 Derive the expression for self-inductance of toroid.

CO5 L4 10M

10M

OR

A Straight long wire is situated parallel to one side of a square coil. Each CO5 L3 side of the coil has a length of 10 cm. The distance between straight wire and the centre of the coil is 20 cm. Find Mutual Inductance of the system.

UNIT-V

Derive an expression for motional and transformer induced emf.

CO6 L4 10M

OR

Explain faradays law of electromagnetic induction and derive the CO6 L3 10M expression for induced EMF.

O.P.Code: 23CS0506

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025
DIGITAL LOGIC AND COMPUTER ORGANIZATION

(Common to CSIT, CSE, CIC, CCC, CAI, CSM, CAD)

Tim	e: 3	Hours		_	
		PART-A	Max. M	arks:	70
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	What are the basic properties of Boolean algebra?	001		
	b	Define K-map	CO1		
	c	Draw the truth table of SR Flip Flop	CO1		
	d	Define a sequential circuit and draw its block diagram.	CO2		
	e	what is floating point numbers?	CO2		
	f	What are the basic operations to execute a complete instruction?	CO3		
*	g	Define main memory and auxiliary memory	CO3		2M
	h	Define virtual memory?	CO6		
	i	Classify interface circuits?	CO4		2M
	j	What are the examples of processor?	CO5		2M
		PART-B	CO6	L1	2M
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Simplify the expression $Y = \Pi(0, 1, 4, 5, 6, 8, 9, 12, 13, 14)$ using K-map.			
	b	Convert the following to Decimal and then to Octal		L3	5M
		(i) $(1234)_{16}$ (ii) $(10110011)_2$	CO1	L3	5M
		OR			
3	a		004		
	b	Simplify the following Boolean Expressions:	CO1	L2	5M
		A'C'+ABC+AC'+AB to three literals.	CO2	L4	5M
		UNIT-II			
4	a	Draw a 4-bit Bi-direction shift register and explain the operation.			
-	b	Differentiate between I/O unit and memory unit.	CO ₃	L2	5M
			CO1	L3	5M
5	а	Design 3 Bit Down Synchronous counter using T Flip Flop			
_	h	Explain the functional projection of the state of the sta	CO ₂	L4	5M
	i.	Explain the functional units in the computer.	CO ₂	L2	5M
_		UNIT-III			
6	a	Explain the Flow chart for Addition and Subtraction.	CO3	L2	5M
	b	Differentiate between Hardwired Control and Micro-programmed control.	CO4	L_2	5M
-		OR		1.2	3111
7	a	Explain the multiple bus organization.	CO3	L2	6M
	D	What is micro programed Control? Explain in detail with a neat diagram	CO4	L3	4M
		UNIT-IV			*11/1
8	a]	Explain 128*8 RAM with block diagram and function table.	CO5	L2	CNA
	b '	What are the performance considerations in cache memory?	CO5		6M
		OR	COS	L2	4M
9	a l	Describe about memory hierarchy concept in detail?	COF	Y 4	53.6
-	b A	What is Virtual Memory? Discuss how address mapping using pages	CO5	L1	5M
		UNIT-V	CO5	L2	5M
10	a F	Explain about interrupt service routine (ISR).			
-	b I	Draw the USB architecture and explain it.	CO ₆	L3	5M
		The state of the s	CO ₆	L2	5M
11	a F	OR Explain the interrupts in input/output			
	b (Explain the interrupts in input/output organization.	CO ₆	L2	5M
	2	Compare data, address and control buses.	CO ₆	L2	5M
		*** END ***			

O.P.Code: 23CS0901

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025
PRINCIPLES OF ARTIFICIAL INTELLIGENCE
(Common to CSM & CAI)

Tin	10.	3 Hours			
1 111	IIC.		Max.	Marl	ks: 70
		PART-A			
1	•	(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)	~~.		
1	a	and the categories in which the definitions are organized	CO1	L2	2M
	b	List the different types of problems in AI.	CO1	L1	2M
	c	What is meant by Adversarial search in AI?	CO2	L1	2M
	d	State Heuristic function and Heuristic values.	CO2	L1	2M
-	e	What is Knowledge? Give its types.	CO3	L2	2M
- 56	f	List the kind of knowledge which needs to be represented in AI systems	CO3	L1	2M
	g	What is FOL?	CO4	L2	2M
	h	State difference between Reinforcement Learning and Supervised Learning.	CO4	L1	2M
	i	What is Meta knowledge and the in what orders they are divided?	CO4	L2	2M
	j	Draw the block diagram of expert system working	CO5	L2	2M
		PART-B			2111
		(Answer all Five Units 5 x 10 = 50 Marks)			
2		Describe the major milestones in the history of artificial intelligence.	CO1	L2	10M
3	•	Discover the form common acts and 1 C 1 C 11	~~.		
3	a	Discuss the four components used to define a problem formally.	CO1	L2	5M
	D	Illustrate with an example what is meant by formulating problems.	CO1	L3	5 M
		UNIT-II			
4		Discuss Uninformed search with its search algorithms stating examples	CO2	L2	10M
7		and complexity in its implementation.	CO2	LZ	TOM
_		OR			
5		Describe Mini-Max Algorithm in Artificial Intelligence. Solve the	CO2	L2	1070
		following Game tree using Mini-Max Algorithm.	CO2	LZ	10M
		UNIT-III			
6		Discuss in detail the key issues related to knowledge representation in AI.	CO3	L2	10M
		OR		~~	10171
7	a	Explain in detail Bayes' probabilistic interferences with an example.	CO3	L3	6M
	b	Explain in detail about Dempster Shafer Theory with an example.		L3	4M
		UNIT-IV			1112
8		Illustrate the knowledge-engineering process with a real time example in			
		detail.	CO4	L6	10M
		OR			
9		Explain decision tree in detail with example. Discuss how identification	92		
		of attribute is performed in decision tree.	CO4	L3	10M
21		UNIT-V			
10		What is an expert system? Discuss the need of it. Give detailed	CO5	L2	10M
		explanation of components of expert system with neat diagram.	CO3	1.2	10141
		OR			
11		Explain XCON with its functions, key features, architecture components,	CO5	L3	10M
		benefits, and challenges.	005	כת	TOTAT
		*** END ***			

O.P.Code: 23ME0303

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025

	THERMODYNAMICS	St-2020		
	(Mechanical Engineering)			
Time: 3 Hours			Ma	rks: 70
	PART-A			
1	(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
.1	a Define the term Surroundings.	CO ₁	L1	2M
9	b What do you mean by control volume?	CO ₁	L1	2M
	c Define the term work.	CO ₂	L1	2M
	d What do you mean by Thermal reservoir?	CO ₂	L1	2M
	e State third law of thermodynamics.	- CO3	L1	2M
	f What do you mean by availability?	CO ₃	L1	2M
	g Define the term pure substance.	CO ₄	L1	2M
	h Define dryness fraction.	CO ₄	L1	2M
	i What do you mean by air conditioning?	. CO5	L1	2M
	j What is meant by refrigeration?	CO ₅	L1	2M
	<u>PART-B</u>			
	(Answer all Five Units $5 \times 10 = 50$ Marks)			
	UNIT-I			
2	a Compare closed system with an open system.	CO1	L4	5M
	b What is meant by thermodynamic equilibrium? Explain in brief.	CO1	L2	5M
	OR	COI		3111
-3	a Explain reversible process with an example.	CO1	L5	ENT
	b What are the causes for irreversibility?	CO1		5M
	UNIT-II	COI	L1	5M
4		000		
•	Explain about Work and Heat transfer. And classify the work transfers.	CO ₂	L2	10M
5	State First law of thermodynamics and its and	~~-		
	State First law of thermodynamics and its applications in brief.	CO ₂	L6	10M
	UNIT-III			
6	a Derive an equation for Gibbs and Helmholtz functions.	CO ₃	L3	5M
	b Derive the Maxwell relations.	CO ₃	L3	5M =
_	OR			
7	5 kg of air at 550 K and 4 bar is enclosed in a closed system.	CO ₃	L4	10M
	(i) Determine the availability of the system if the surrounding pressure			
	and temperature are 1 bar and 290 K respectively.			
	(ii) If the air is cooled at constant pressure to the atmospheric			
	temperature determine the availability			
*	UNIT-IV			
8	Build the phase equilibrium diagram for a pure substance P-V, P-T	CO4	L6	10M
	T-S plot with relevant constant property line	CO4	LU	10171
	OR			
9	Determine the amount of heat, which should be supplied to 2 kg of	CO4	L2	10M
	water at 25°C to convert it into steam at 5 bar and 0.9 dry	004		101/1
	UNIT-V			
10	Explain the psychometric properties in brief	COZ	Y =	1035
_ 0		CO5	L5	10M
11	OR Explain the desirable properties of refrigerant in detail	005	T 0	403.5
		CO ₅	L2	10M

O.P.Code:20ME0305

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 MATERIAL SCIENCE AND METALLURGY

(Mechanical Engineering)

Time	: 3 Hours	Max. N	Max. Marks: 70			
	PART-A					
1	(Answer all the Questions $10 \times 2 = 20$ Marks) a State the Gibb's rule.	CO1	Y 4	23.4		
1		CO1	L1	2M		
	75 11 dt 11 t t t t	CO1	L1	2M		
	d What is the super alloy?	CO2	L1	2M		
		CO2 CO3	L1	2M		
	e Define the annealing process and write its purposes.f Define the toughness and how it is measured?	CO3	L1	2M		
		CO3	L1 L1	2M 2M		
	g Define sintering in powder metallurgy and list out its types.h What are cermets and write is examples.	CO4	L1			
	i List out the advantages of composite materials.	CO4	L1	2M 2M		
	j What is glass and write any two properties of it.	CO5	L1	2M		
	PART-B	CO3	LI	21 V1		
	(Answer all Five Units $5 \times 10 = 50$ Marks)					
	UNIT-I					
2	Describe the various imperfections in crystals and their effects on properties	CO1	L1	10M		
_	OR	COI		TUIVI		
3	Draw and explain the Fe-Fe ₃ C phase diagram invariant reactions.	CO1	L3	10M		
	UNIT-II	COI		10111		
4	a Explain the structure and properties of Spheroidal graphite cast iron.	CO2	L2	5M		
-	b Discuus about the Hadfield steels.	CO2	L1	5M		
	OR	CO2	LI	SIVI		
5	List out the compositions, properties and uses of the following alloys:	CO2	L1	10M		
J	(i) Cartridge brass (ii) Muntz Metal (iii) Gun metal (iv) Bell metal (v) Y-allo		LIA	10171		
	UNIT-III	3				
6	Explain the 'TTT 'diagrams in detail about their construction and significan	ice. CO3	L2	10M		
v	OR			10111		
7	a Explain about various hardening process for alloys.	CO3	L2	5M		
	b Explain in details about age hardening process.	CO3	L2	5M		
	UNIT-IV					
8	a Explain the need of powder metallurgy.	CO4	L2	6M		
Ū	b List out the advantages and disadvantages of powder metallurgy.	CO4	L1	4M		
	OR	004		4141		
9	Explain the methods of producing metal powders.	CO4	L2	10M		
	UNIT-V			10111		
10	a Define composite material. Explain the function of matrix, reinforce phase	es. CO5	L1	5M		
10	b Explain carbon – carbon composites. Discuss about their properties.					
	OR	CO5	L2	5M		
11	Explain in detail about nano materials and smart materials.	CO5	L2	10M		
11	*** END ***	COS	114	TOM		
	END					

Q.P.Code: 23EC0403

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. II Year I Semester Supplementary Examinations August-2025 DIGITAL CIRCUITS DESIGN

(Electronics & Communications Engineering)

		(Electronics & Communications Engineering)			
Tin	ıe:	3 Hours	Max.	Marl	ks: 70
		PART-A			
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1	a	Perform the following Subtraction using 10's complement method.	CO ₁	L1	2M
		i) 3456 – 245 ii) 631-745			
	b	What are Universal Gates? Give their truth tables.	CO ₁	L1	2M
	c	Define Multiplexer and Demultiplexer.	CO ₄	L1	2M
	d	What is a Priority encoder?	CO ₄	L1	2M
	e	What is the Sensitivity list?	CO ₆	L1	2M
	f	What are Verilog parallel case and full case statements?	CO6	L2	2M
	g	What is race condition?	CO4	L1	2M
	h	What is the application of T flip flop?	CO4	L1	2M
	i	List some of the limitations of finite state machines.	CO2	L1	2M
	į	List basic types of programmable logic devices.	CO5	L1	2M
	J	PART-B	CO3	LI	2111
		(Answer all Five Units 5 x $10 = 50$ Marks)			
_		UNIT-I			
2		Prove De Morgan's theorems using Perfect Induction Method.	CO ₁	L3	5M
	b	Simplify the given Boolean expression to a sum of 3 terms. A'C'D' +AC'	CO ₂	L4	5M
		+BCD + A'CD' + A'BC + AB'C'			
_		OR			
3	a	Obtain the simplified SOP and POS form of the following boolean	CO ₂	L1	5M
		expression, $Y = B C + A C' + A B + A B C using K-map$.			
	b	Obtain the Dual and complement to the following Boolean expression	CO ₃	L1	5M
		AB'C+AB'D+A'B'			
		UNIT-II			
4	a	Design a Full Subtractor using truth table.	CO ₄	L3	5M
	b	Construct a BCD Adder-circuit using 4-bit binary adders.	CO ₄	L3	5M
		OR			
5		Explain Binary Multiplier with an example.	CO ₄	L2	10M
		UNIT-III			10111
6		Explain Conditional operator in Verilog with an example.	COC	т 2	ENA
U	a		CO6	L2	5M
	D	State For loop statement in Verilog and explain the same with an example	CO ₆	L1	5M
7		OR Write on Veriles and for 2 Dit him we will die in structure! Model	000	τ Δ	107/
7		Write an Verilog code for 2 Bit binary multiplier in structural Model.	CO6	L2	10M
		UNIT-IV			
8		Design an 2-bit synchronous up-counter using Verilog Code	CO4	L6	5M
	b	Explain about the Ring counter in detail.	CO4	L2	5M
		OR			
9		Design a 4 bit Decade counter	CO ₄	L4	10M
		UNIT-V			
10	a	Distinguish between Mealy & Moore machines.	CO ₅	L2	5M
	b	Compare PROM,PLA & PLA.	CO5	L2	5M
	_	OR		~44	JII
11		Explain in brief about Programmable Read Only Memory (PROM) with a	CO5	L2	10M
		suitable example.	203		T 0111
		*** END ***			
N.		2112			